| СОВЕТЫ ЗАНИМАЮЩИМСЯ| калькулятор уравнений | Тригонометрический калькулятор | Тригонометрические таблицы | Пирамида | Вес и объем | Перпендикуляр, наклонная, проекция | Поперечный масштабд | Многоугольники | Квадраты | Приближенные числа |
  • Sitemap
  • Contact
  • СОВЕТЫ ЗАНИМАЮЩИМСЯ
  • ПРАВИЛА ДЕЙСТВИЙ С ПРИБЛИЖЕННЫМИ ЧИСЛАМИ
  • § 9. Противоположные углы
  • § 10. Окружность
  • § 11. Пересечение окружности с прямою и с другою окружностью
  • § 12. Измерение углов
  • § 13. Параллельные прямые. Углы при них
  • § 14. Углы с параллельными сторонами
  • § 15. Сумма углов треугольника Предварительные упражнения
  • § 16. Следствия предыдущего параграфа
  • § 17. Как построить треугольник по трем сторонам
  • § 18. Как построить угол, равный данному
  • Первый концентр
  • § 19. Как разделить угол пополам
  • § 20. Как построить треугольник по двум сторонам и углу между ними
  • § 21. Как разделить отрезок пополам
  • § 22. Как построить треугольник по стороне и двум углам
  • § 23. Параллелограммы
  • Технологии обучения на уроках математики
  • § 88. Пирамида. Ее боковая поверхность и объем

    Пирамидой называется тело, ограниченное с одной стороны треугольником или каким-нибудь многоугол ьником (о с н о в а н и е пирамиды), а со всех других сторон – треугольниками, сходящимися в одной точке (в вершине пирамиды). Перпендикуляр, проведенный от вершины пирамиды к ее основанию, называется ее высотою (прямая называется п е р п е н д и к у л я р н о й к п л о с к о с т и, если она составляет прямые углы с каждой прямой, проведенной в этой плоскости через точку встречи). Если основание пирамиды – треугольник, пирамида называется «треугольной», если четырехугольник – «четырехугольной» и т. д. На черт. 238 изображены треугольная, четырехугольная и шестиугольная пирамиды.

    Если мы начертим развертку какой-нибудь пирамиды (сделайте это), то установим способ вычисления ее б о к о в о й поверхности: надо вычислить площадь каждой боковой треугольной грани и все эти площади сложить. В том случае когда все боковые грани одинаковы (такая пирамида называется п р а в и л ь н о ю), вычисление упрощается: определяют площадь одной треугольной грани и умножают ее на число граней. Например, боковая поверхность правильной шестиугольной пирамиды равна 6 ? al/2 =3al,

    где a– сторона шестиугольника, лежащего в основании пирамиды, а l – высота каждой треугольной грани; она называется «апофемой» правильной пирамиды. Для правильной пирамиды о nгранях боковая поверхность равна n ? al/2 = nal/2

    Так как па – есть сумма сторон основания пирамиды, т. е. ее периметр, то правило вычисления боковой поверхности правильной пирамиды можно словесно высказать так:

    б о к о в а я п о в е р х н о с т ь п р а в и л ь н о й п и р а м и д ы р а в н а п о л у п р о и з в е д е н и ю п е р и м е т р а о с н о в а н и я н а а п о ф е м у. Правило вычисления объема пирамиды выводится в подробных учебниках математики. Мы приведем его здесь без доказательства, так как доказательство это чересчур сложно:

    о б ъ е м п и р а м и д ы р а в е н о д н о й т р е т и п р о и з в е д е н и я е е о с н о в а н и я н а в ыс о т у.

    Обозначив площадь основания пирамиды через S, а высоту через A, получим такую формулу объема и пирамиды:

    V= 1/3 Sh.

     

    Повторительные вопросы

    Что называется пирамидой? – Что называется основанием и что – вершиной? – Что называется высотою пирамиды? – Какая пирамида называется пятиугольной, десятиугольной, 12-угольной? – Какая пирамида называется правильной? – Что называется апофемой правильной пирамиды? – Припомните, что называется апофемой правильного многоугольника. – Как вычисляются боковая поверхность и объем правильной пирамиды? – Как выражаются эти правила формулами? – Как выражаются эти правила формулами?

    Применения

    117. Величайшая из пирамид Египта (пирамида Хеопса) достигала в высоту 146 метров; ее квадратное основание имело 233 метра в ширину. Предполагая, что она сплошь сложена из камней, вычислите, какой высоты каменную стену, толщиною в полметра и длиною от Ленинграда до Москвы, можно было бы соорудить из ее материала (расстояние – 640 километров).

    Р е ш е н и е. Объем пирамиды равен

    1/3 ?2332?146 куб. м.

     

    Обозначив искомую высоту стены через x, имеем уравнение

    6 400 000 ??? х = 1/32332-146, откуда х = 8,5 м.

    118. Стог соломы имеет форму прямоугольного параллелепипеда с пирамидальной верхушкой. Размеры основания стога 6 Ч 6 м; высота до основания пирамиды – 4 м до верши-1 ны пирамиды – 5 м. Сколько килограммов соломы в этом стоге? Куб. метр соломы весит 100 кг.

    Р е ш е н и е. Объем призматической части стога 6 ? 6 ? 4 = 144 куб. м. Объем пирамидальной части 1/3 ? 6 ? 6 = 12 куб. м. Общий объем 144 + 12 = 156 куб. м. В стоге 15 600 кг соломы.

    119. Вычислите объем и боковую поверхность правильной пятигранной пирамиды, сторона основания которой 45 см, а высота – 76 см.

    Р е ш е н и е. Начнем с вычисления площади основания пирамиды, при чем воспользуемся тригонометрическими соотношениями. Площадь правильного пятиугольника со стороною 45 см равна 5 ? 45 ? ? l,

    где l – апофема. Так как центральный угол, опирающийся на сторону правильного вписанного пятиугольника, = 360°/5 = 72°, то апофема l = 22, cotg 36° = 16 см. Следовательно, площадь основания пирамиды 5 45 8 = 1800 кв. см, а искомый объем = 1/31800 ? 76 = 45 600 куб. см.

    Для вычисления боковой поверхности необходимо определить длину апофемы пирамиды. Из чертежа (сделайте его) видно, что апофема есть гипотенуза прямоугольного треугольника, катеты которого – высота пирамиды и апофема ее

    основания. Значит, апофема пирамиды

    Отсюда боковая поверхность пирамиды 6 ? 145 ? ? ?78 = 10 000 кв. см.

    СОВЕТЫ   Тригонометрические таблицы   Пирамида   Объем и вес   Перпендикуляр, наклонная, проекция   Поперечный масштаб   Многоугольники   Таблица синусов   Объем и вес   Цилиндр   Таблица косинусов и синусов   Средняя линия трапеции