| СОВЕТЫ ЗАНИМАЮЩИМСЯ| калькулятор уравнений | Тригонометрический калькулятор | Тригонометрические таблицы | Пирамида | Вес и объем | Перпендикуляр, наклонная, проекция | Поперечный масштабд | Многоугольники | Квадраты | Приближенные числа |
  • Sitemap
  • Contact
  • СОВЕТЫ ЗАНИМАЮЩИМСЯ
  • ПРАВИЛА ДЕЙСТВИЙ С ПРИБЛИЖЕННЫМИ ЧИСЛАМИ
  • § 9. Противоположные углы
  • § 10. Окружность
  • § 11. Пересечение окружности с прямою и с другою окружностью
  • § 12. Измерение углов
  • § 13. Параллельные прямые. Углы при них
  • § 14. Углы с параллельными сторонами
  • § 15. Сумма углов треугольника Предварительные упражнения
  • § 16. Следствия предыдущего параграфа
  • § 17. Как построить треугольник по трем сторонам
  • § 18. Как построить угол, равный данному
  • Первый концентр
  • § 19. Как разделить угол пополам
  • § 20. Как построить треугольник по двум сторонам и углу между ними
  • § 21. Как разделить отрезок пополам
  • § 22. Как построить треугольник по стороне и двум углам
  • § 23. Параллелограммы
  • Технологии обучения на уроках математики
  • § 84. Конусность. Тангенс и котангенс острого угла

    VI. КРУГЛЫЕ ФИГУРЫ[7]

    О круглых изделиях, суживающихся по прямой линии к одному концу, говорят, что они имеют «конусность». Конусность измеряется величиною уменьшения радиуса круга поперечного сечения на каждый сантиметр длины изделий. Если, например, радиус круга поперечного сечения изделия уменьшается с каждым сантиметром на 0,25 мм, то конусность изделия равна 0,25 мм на 1 см.

     

    Легко рассчитать, что если длина изделия – 40 см, то от одного конца к другому оно суживается на 2 0,25 мм 40 = = 20 мм = 2 см. Наоборот, если круглое изделие в 50 см длины имеет на концах разность толщины (диаметров) 30 мм, то на каждый сантиметр длины разность диаметров составляет 30 мм: 50 = 0,6 мм, а разность радиусов – 0,3 мм; значит «конусность» этого изделия 0,3 мм на 1 см (или 0,3: 10 = 0,03).

    Итак, конусность измеряется отношением катетов (черт. 227) ВС : АС в прямоугольном треугольнике АВС. Это отношение определяет наклон прямой АВ к LCи, следовательно, может служить мерою угла ВАС.

    Мы видим из этого примера, что кроме уже известного нам градусного способа измерения острых углов, можно пользоваться еще и другим способом. Способ этот состоит в том, что за меру острого угла принимают отношение противолежащего ему катета к прилежащему катету в том треугольнике, который отсекается от этого угла перпендикуляром к одной из сторон. Например, угол А (черт. 228) можно измерять отношением ВС : АВ или равным ему отношением ED: AE (почему эти отношения равны?), или также равным им отношением MN: AN (почему это отношение равно предыдущим?). Каждое из этих равных отношений называется т а н г е н с о м угла A и обозначается через tang или tg.

    Легко понять, что каждому острому углу отвечает определенный тангенс. Найти значение тангенса для каждого угла возможно помощью чертежа, измерив длину соответствующих линий и вычислив их отношение. Таким путем можно составить таблицу тангенсов для всех углов от 1° до 10°. Способ этот прост, но не достаточно точен. Существуют способы (чересчур сложные, чтобы их рассматривать здесь) узнавать тангенсы с любою точностью посредством вычислений. Готовая таблица вычисленных таким путем тангенсов для всех острых углов от 0°до 90° приложена в конце книги (вместе с некоторыми другими величинами, о которых речь будет дальше).

    Если станем изменять величину угла от 0° до 90° и следить, как изменяется при этом величина тангенса, то заметим следующее. Когда угол близок к 0°, то и тангенс близок к нулю; поэтому условно пишут, что tg0° = 0. С увеличением угла tgего быстро возрастает, а при 90° перпендикуляр к одной стороне угла вовсе не встречает другой: точка пересечения, как говорят, «удаляется в бесконечность». Поэтому считают, что tg90 ° = бесконечности.

    Для некоторых углов можно вычислить тангенс весьма несложным расчетом. Например, тангенс угла в 45° равен (черт. 229) ВС : АВ = 1 (почему?). Тангенс угла в 30° (черт. 230) равен ВС: АВ; но в треугольнике АСВ

    Вместо отношения противолежащего катета к прилежащему можно для измерения острых углов брать и обратное отношение прилежащего катета к противолежащему. Это отношение называется к о т а н г е н с о м угла и обозначается знаком cotg. Из черт. 228 имеем:

    Вообще между тангенсом и котангенсом существует следующая зависимость:

    Легко сообразить, что с увеличением угла тангенс его увеличивается, а котангенс – уменьшается.

    Рассмотрим еще одну зависимость между величиною тангенса и котангенса острых углов. Из прямоугольного треугольника АВС (черт. 231) видим:

    А так как сумма углов А и В равна 90° (эти углы, как принято говорить, «дополнительные»), то tg А= cotg (90 – A); cotg A = tg (90 – А).

    Например:

    tg30° = cotg60°; tg17° = cotg73° и т. п.

    Выражая эту зависимость словесно, устанавливаем правило:

    т а н г е н с о с т р о г о у г л а р а в е н к о т а н г е н с у д о п о л н и т е л ь н о г о у г л а.

    На этом основании таблицу тангенсов и таблицу котангенсов углов можно свести в одну таблицу, устройство которой мы сейчас объясним.

    СОВЕТЫ   Тригонометрические таблицы   Пирамида   Объем и вес   Перпендикуляр, наклонная, проекция   Поперечный масштаб   Многоугольники   Таблица синусов   Объем и вес   Цилиндр   Таблица косинусов и синусов   Средняя линия трапеции