| СОВЕТЫ ЗАНИМАЮЩИМСЯ| калькулятор уравнений | Тригонометрический калькулятор | Тригонометрические таблицы | Пирамида | Вес и объем | Перпендикуляр, наклонная, проекция | Поперечный масштабд | Многоугольники | Квадраты | Приближенные числа |
  • Sitemap
  • Contact
  • СОВЕТЫ ЗАНИМАЮЩИМСЯ
  • ПРАВИЛА ДЕЙСТВИЙ С ПРИБЛИЖЕННЫМИ ЧИСЛАМИ
  • § 9. Противоположные углы
  • § 10. Окружность
  • § 11. Пересечение окружности с прямою и с другою окружностью
  • § 12. Измерение углов
  • § 13. Параллельные прямые. Углы при них
  • § 14. Углы с параллельными сторонами
  • § 15. Сумма углов треугольника Предварительные упражнения
  • § 16. Следствия предыдущего параграфа
  • § 17. Как построить треугольник по трем сторонам
  • § 18. Как построить угол, равный данному
  • Первый концентр
  • § 19. Как разделить угол пополам
  • § 20. Как построить треугольник по двум сторонам и углу между ними
  • § 21. Как разделить отрезок пополам
  • § 22. Как построить треугольник по стороне и двум углам
  • § 23. Параллелограммы
  • Технологии обучения на уроках математики
  • § 80. Вписанный равносторонний треугольник

    Чтобы вписать в круг равносторонний треугольник, можно воспользоваться способом построения правильного шестиугольника: разделив окружность на 6 равных частей соединяют точки: деления через одну.

    Длину стороны вписанного, равностороннего треугольника, считая радиус круга известным (R), находят, пользуясь теоремой Пифагора. Если (черт. 220) А, В, С,

    Dесть четыре вершины правильного вписанного шестиугольника, то AD= а6 = R, BD= а = стороне вписанного равностороннего треугольника; AD= диаметру круга=2Л. Из прямоугольного треугольника ABD(докажите, что уг. В – прямой) имеем

    [AD]2= [АВ]2+[BD]2, т. е. [2R]2=R2+ a23,

    откуда

    СОВЕТЫ   Тригонометрические таблицы   Пирамида   Объем и вес   Перпендикуляр, наклонная, проекция   Поперечный масштаб   Многоугольники   Таблица синусов   Объем и вес   Цилиндр   Таблица косинусов и синусов   Средняя линия трапеции