| СОВЕТЫ ЗАНИМАЮЩИМСЯ| калькулятор уравнений | Тригонометрический калькулятор | Тригонометрические таблицы | Пирамида | Вес и объем | Перпендикуляр, наклонная, проекция | Поперечный масштабд | Многоугольники | Квадраты | Приближенные числа |
  • Sitemap
  • Contact
  • СОВЕТЫ ЗАНИМАЮЩИМСЯ
  • ПРАВИЛА ДЕЙСТВИЙ С ПРИБЛИЖЕННЫМИ ЧИСЛАМИ
  • § 9. Противоположные углы
  • § 10. Окружность
  • § 11. Пересечение окружности с прямою и с другою окружностью
  • § 12. Измерение углов
  • § 13. Параллельные прямые. Углы при них
  • § 14. Углы с параллельными сторонами
  • § 15. Сумма углов треугольника Предварительные упражнения
  • § 16. Следствия предыдущего параграфа
  • § 17. Как построить треугольник по трем сторонам
  • § 18. Как построить угол, равный данному
  • Первый концентр
  • § 19. Как разделить угол пополам
  • § 20. Как построить треугольник по двум сторонам и углу между ними
  • § 21. Как разделить отрезок пополам
  • § 22. Как построить треугольник по стороне и двум углам
  • § 23. Параллелограммы
  • Технологии обучения на уроках математики
  • § 62. Касательные ц их построение

    Другой способ нахождения центра (напр., точеных изделий) – помощью особого инструмента, «центроиска-теля» – основан на свойствах так наз. касательных линий. К а с а т е л ь н о й к окружности называется всякая прямая линия, которая в точке встречи с окружностью перпендикулярна радиусу, проведенному к этой точке. Например, на черт. 174 прямые АВ, CD и EF– касательные к окружности АСЕ. Точки А, С, Е называются «точками касания». Особенность касательной, линии та, что она и м е е т с о к р у ж н о с т ь ю т о л ь к о о д н у о б щ у ю т о ч к у. Действительно, если бы у касательной AB(черт. 175) была с окружностью, кроме этой еще одна общая точка, напр., С, то, соединив ее с центром, мы получили бы равнобедренный треугольник СОА с двумя прямыми углами СА, а это, мы знаем, невозможно (почему?).

    С линиями, касательными к окружности, мы встречаемся весьма часто в практической жизни. Веревка, перекинутая через блок, занимает в своих натянутых частях положение касательных прямых к окружности блока. Ремни талей (сочетания нескольких блоков, черт. 176) располагаются по линии общих касательных к окружности колес. Передаточные ремни шкивов тоже занимают положение общих касательных к окружностям шкивов «внешних» касательных в так наз. открытой передаче и «внутренних» – в закрытой.

    Как через данную точку вне окружности провести к ней касательную? Другими словами: как через точку А (черт. 177) провести прямую АВ, чтобы угол АВО был прямой? Выполняется это следующим образом. Соединяют А с центром О (чертеж 178). Прямую делят пополам и вокруг середины ее В, как центра, описывают окружность радиусом ВО. Иначе говоря, на ОА строят круг, как на диаметре. Точки пересечения С и Dобеих окружностей соединяют с А прямыми линиями: это и будут касательные.

    Чтобы в этом убедиться, проведем из центра к точкам С и Dвспомогательные прямые ОС и ОD. Углы ОСА и ODA– прямые, так как они вписаны в полуокружность. А это и значит, что ОС и OD– касательные к окружности.

    Рассматривая наше построение, мы видим, между прочим, что из каждой точки вне окружности можно провести к ней д в е касательные. Нетрудно убедиться, что обе эти касательные о д и н а к о в о й д л и н ы, т. е., что AC= AD. Действительно, точка О одинаково удалена от сторон угла А; значит ОА – равноделящая, и следовательно, треугольники ОАС и OADравны (СУС).

    Попутно мы установили, что прямая, которая делит пополам угол между обеими касательными, проходит через центр круга. На этом основано устройство прибора для разыскания центра точеных изделий – ц е н т р о и с к а т е л я (черт. 179). Он состоит из двух линеек АВ и АС, укрепленных под углом, и третьей линейки BD, край которой BDделит пополам угол между краями

    первых двух линеек. Прибор прикладывают к круглому изделию так, чтобы прилегающие к нему края линеек АВ и ВС соприкасались с окружностью изделия. Края будут при этом иметь с окружностью только по одной общей точке, поэтому край линейки должен, согласно сейчас указанному свойству касательных, пройти через центр круга. Прочертив на изделии по линейке диаметр круга, прикладывают центроискатель к изделию в другом положении и прочерчивают другой диаметр. Искомый центр окажется на пересечении обоих диаметров.

    Если нужно провести общую касательную к двум окружностям, т. е. провести прямую линию, которая касалась бы одновременно двух окружностей, то поступают следующим образом. Около центра одной окружности, например, около В (черт. 180), описывают вспомогательную окружность радиусом, равным разности радиусов обеих окружностей. Затем из точки А проводят касательные АС и AD к этой вспомогательной окружности. Из точек А и В проводят прямые, перпендикулярные к АС и AD, до пересечения с данными окружностями в точках E, F, H и G. Прямые, соединяющие Е с F, G с H, будут общие касательные к данным окружностям, так как они перпендикулярны к радиусам AE, CF, AG и DH.

    Кроме тех двух касательных, которые сейчас были проведены и которые называются в н е ш н и м и, возможно еще провести две другие касательные, расположенные так, как на черт. 181 (в н у т р е н н и е касательные). Чтобы выполнить это построение, описывают вокруг центра одной из данных окружностей – например, вокруг В – вспомогательную окружность радиусом, равным с у м м е радиусов обеих окружностей. Из точки А проводят к этой вспомогательной окружности касательные. Дальнейший ход построения читатели смогут найти сами.

     

    Повторительные вопросы

    Что называется касательной? Сколько общих точек у касательной и окружности? – Как провести касательную к окружности через точку, лежащую вне окружности? – Сколько можно провести таких касательных? – Что такое центроис-катель? – На чем основано его устройство? – Как провести общую касательную к двум окружностям? – Сколько таких касательных?

    Применения

    71. Два прямых участка дороги соединены дугою так, что прямые участки имеют направление касательных к этой дуге (черт. 182). Угол между прямыми участками – 155°. Найти длину дуги, если радиус ее = 270 метров.

    Р е ш е н и е. Из черт. 182 видим, что в четырехугольнике ОВЕС уг. Е – 155°, уг. ОBE – прямой, уг. ОСЕ – прямой. Так как сумма внутренних углов четырехугольника = 180° [4 – 2] – 360°, то угол О = 360° – [155° + 90° + 90°] – 25°. Длина полной окружности радиуса 270 м – 2 ? 3,14 ? 270 = 1700 м, а длина дуги в 25°= 1700 ? 25/360 = 120 м. Искомая длина дуги – 120 метров.

    СОВЕТЫ   Тригонометрические таблицы   Пирамида   Объем и вес   Перпендикуляр, наклонная, проекция   Поперечный масштаб   Многоугольники   Таблица синусов   Объем и вес   Цилиндр   Таблица косинусов и синусов   Средняя линия трапеции