| СОВЕТЫ ЗАНИМАЮЩИМСЯ| калькулятор уравнений | Тригонометрический калькулятор | Тригонометрические таблицы | Пирамида | Вес и объем | Перпендикуляр, наклонная, проекция | Поперечный масштабд | Многоугольники | Квадраты | Приближенные числа |
  • Sitemap
  • Contact
  • СОВЕТЫ ЗАНИМАЮЩИМСЯ
  • ПРАВИЛА ДЕЙСТВИЙ С ПРИБЛИЖЕННЫМИ ЧИСЛАМИ
  • § 9. Противоположные углы
  • § 10. Окружность
  • § 11. Пересечение окружности с прямою и с другою окружностью
  • § 12. Измерение углов
  • § 13. Параллельные прямые. Углы при них
  • § 14. Углы с параллельными сторонами
  • § 15. Сумма углов треугольника Предварительные упражнения
  • § 16. Следствия предыдущего параграфа
  • § 17. Как построить треугольник по трем сторонам
  • § 18. Как построить угол, равный данному
  • Первый концентр
  • § 19. Как разделить угол пополам
  • § 20. Как построить треугольник по двум сторонам и углу между ними
  • § 21. Как разделить отрезок пополам
  • § 22. Как построить треугольник по стороне и двум углам
  • § 23. Параллелограммы
  • Технологии обучения на уроках математики
  • § 41. Съемка плана небольшого участка

    При съемке плана небольшого участка помощью мерного шнура и эккера вы можете поступать различно, смотря по тому, какую форму имеет участок. Рассмотрим здесь несколько случаев.

    1) Пусть требуется снять план участка, изображенного на черт. 117. Начинаем с того, что провешиваем через него прямую линию 1–2 (цифры здесь имеют то же значение, что и буквы) так, чтобы она прорезывала его примерно посередине. Линию эту называют «магистра лью». Потом через все поворотные точки границы – 3, 4, 5, б, 7, 8 и 9 – проводят прямые под прямыми углами к «магистрали»; выполняется это помощью эккера. Точки 10, 11, 12, 13, 14, 15 и 16, в которых перпендикуляры встречают магистраль, отмечают колышками. Теперь остается измерить длины всех перпендикуляров: 3-10, 15-9, 4-11, 5-12 и т. д., а также расстояния колышков 10, 15, 11 и т. д. от точки 1. Записав эти длины против линий наброска, который мы делаем попутно на бумаге на глаз, мы имеем все данные, какие нам нужны для изготовления плана, а также для определения площади участка. Как вычерчивается план и определяется площадь по этим данным, будет объяснено далее.

    2) Если надо снять план участка, внутрь которого входить нельзя, – напр., план засеянного поля или озера (черт. 118), то обчерчивают его прямоугольником ABCDснаружи и проводят к его сторонам перпендикуляры.

    3) Бывают случаи, когда для магистральных линий удобно пользоваться не прямоугольником, а треугольником. Напр., очертания участка черт. 119 удобно изобразить на плане, если провешить внутри него три линии в форме треугольника ABCи пользоваться этими линиями, как магистралями. Измерять углы между сторонами этого треугольника не нужно: достаточно измерить лишь длину сторон, так как по трем сторонам можно построить только один треугольник.

    Иногда приходится пользоваться не одним треугольником, а сеткой из нескольких треугольников (черт. 120).

    Если форма участка такова, что он плохо укладывается в рамках прямоугольника, то обчерчивают его многоугольником (черт. 121) Измерить стороны этого многоугольника недостаточно, чтобы иметь возможность его начертить: необходимо знать величину углов между сторонами. Для этого отмеряют от вершины каждого угла 10 метров и затем измеряют расстояние между концами отмеренных отрезков, – как показано для угла А на черт. 121. Треугольник АВС можно будет построить, так как известна длина его трех сторон. В тех случаях, когда соединительная линия не может быть промерена, откладывают 10 метров на продолжении сторон, как показано для угла M.

    Черт. 120 Черт. 121

    Во всех случаях у вас в руках оказывается черновой набросок участка земли с указанием величины измеренных расстояний.

    Заметим еще, что когда перпендикуляры к магистралям коротки – как на черт. 118 – их проводят на глаз, без эккера, и измеряют не мерной веревкой, а шагами.

    Остается объяснить, как по полученным нами данным чертится план участка, т. е. как превратить имеющийся у вас набросок в аккуратно исполненный чертеж.

    Чтобы изобразить на плане участок, показанный на черт. 117, проводят по линейке магистральную линию 1–2 и откладывают на ней, в заранее выбранном масштабе, расстояние 1-10, 1-15, 1-11, 1-12 и 1-16 и т. д., т. е. отмечают точки 10, 15, 11, 12, 16 и т. д. Через эти точки проводят, помощью чертежного треугольника, перпендикуляры и откладывают на них, в том же масштабе, расстояния: 10-3, 15-9, 11-4 и т. д. Когда это сделано, соединяют точки 1, 3, 4, 5… прямыми линиями или изогнутыми, делая изгибы такими, какими они изображены на черновом наброске; ошибка здесь может получиться лишь небольшая, потому что основные, поворотные точки границы нанесены вполне точно.

    Сходным образом приходится поступать в тех случаях, когда магистрали составляют треугольник (см. черт. 119). Треугольник, длина всех трех сторон которого известна, строят, как объяснено в § 17. В случае сети из нескольких треугольников их строят последовательно, примыкая один к другому. Когда треугольники начерчены, остается только провести перпендикуляры и докончить чертеж, как объяснено было для других случаев.

    В случае участка, представленного на черт. 118, начинают с прямоугольника, размеры всех сторон которого известны и которые поэтому нетрудно начертить (в масштабе). А когда это сделано, намечают на сторонах точки, через которые проведены перпендикуляры, и чертят их в масштабе. Дальше поступают, как в предыдущих примерах.

    В полученных нами планах изображены только границы участка. Часто бывает нужно изобразить и положение различных подробностей внутри этих границ – колодца, большого дерева на лугу, строения и т. п. Сделать это нетрудно, если выполняя измерения границ, провести от этих предметов перпендикуляры к магистрали и измерить их длину, а также расстояние от точки пересечения обеих линий.

    СОВЕТЫ   Тригонометрические таблицы   Пирамида   Объем и вес   Перпендикуляр, наклонная, проекция   Поперечный масштаб   Многоугольники   Таблица синусов   Объем и вес   Цилиндр   Таблица косинусов и синусов   Средняя линия трапеции