| СОВЕТЫ ЗАНИМАЮЩИМСЯ| калькулятор уравнений | Тригонометрический калькулятор | Тригонометрические таблицы | Пирамида | Вес и объем | Перпендикуляр, наклонная, проекция | Поперечный масштабд | Многоугольники | Квадраты | Приближенные числа |
  • Sitemap
  • Contact
  • СОВЕТЫ ЗАНИМАЮЩИМСЯ
  • ПРАВИЛА ДЕЙСТВИЙ С ПРИБЛИЖЕННЫМИ ЧИСЛАМИ
  • § 9. Противоположные углы
  • § 10. Окружность
  • § 11. Пересечение окружности с прямою и с другою окружностью
  • § 12. Измерение углов
  • § 13. Параллельные прямые. Углы при них
  • § 14. Углы с параллельными сторонами
  • § 15. Сумма углов треугольника Предварительные упражнения
  • § 16. Следствия предыдущего параграфа
  • § 17. Как построить треугольник по трем сторонам
  • § 18. Как построить угол, равный данному
  • Первый концентр
  • § 19. Как разделить угол пополам
  • § 20. Как построить треугольник по двум сторонам и углу между ними
  • § 21. Как разделить отрезок пополам
  • § 22. Как построить треугольник по стороне и двум углам
  • § 23. Параллелограммы
  • Технологии обучения на уроках математики
  • § 14. Углы с параллельными сторонами

    Предварительные упражнения

    Начертите несколько пар углов, расположенных так, что стороны одного угла параллельны сторонам другого. Какие здесь возможны случаи? Возможно ли, чтобы обе пары параллельных сторон имели одинаковое направление (например, все направлялись бы влево от вершин углов)? Возможно ли, чтобы параллельные стороны имели встречное направление? Еще какое возможно здесь расположение?

    Рассмотрим свойство углов, расположенных так, что стороны одного угла параллельны сторонам другого и притом одинаково направлены (считая от вершины; см. черт. 36). Нетрудно убедиться, что такие углы всегда равны: продолжив сторону одного угла до пересечения

    со стороною другого угла (черт. 37), видим, что уг. 2 = уг. 3; уг. 1 = уг. 3; значит, уг. 1 = уг. 2. Это верно и при ином расположении углов с параллельными сторонами: когда обе стороны угла направлены п р о т и в о п о л о ж н о о б е и м сторонам другого (черт. 38). Убедиться в этом можно таким же образом, как и в сейчас рассмотренном случае.


    Но если параллельные стороны двух углов имеют в одной паре одинаковое направление, в другой же паре – противоположное, то такие углы не равны (уг. 1 и уг. 2 на черт. 39). Продолжив одну сторону одного угла до пересечения со стороною другого угла, видим, что уг. 2 вместе с уг. 1 составляют два прямых угла (почему?);

     

    Повторительные вопросы к §§ 13 и 14

    Какие линии называются параллельными? – Покажите на чертеже соответственные углы, перекрестные, односторонние. – Какие из них при параллельных линиях равны? – Какое вам известно свойство односторонних углов? Углов с параллельными сторонами? Какие углы с параллельными сторонами равны и какие не равны? – Каким свойством отли чаются н е р а в н ы е углы с параллельными сторонами?

     

    Применения §§ 13 и 14.

    7. Прямая линия перпендикулярна к одной из параллельных. Под каким углом встречает она другую параллельную?

    Р е ш е н и е. Тоже под прямым углом, так как соответственные углы при параллельных линиях равны.

    8. Один из углов, образовавшихся при пересечении двух параллельных третьей прямой линией, равен 64°. Чему равны остальные 7 углов (сделайте чертеж и надпишите на нем размеры углов).

    Р е ш е н и е. Углы, смежные с данным = 116°; противоположный = 64°. Такие же размеры имеют и углы, с ними соответственные.

    III. ПЕРВЫЕ СВЕДЕНИЯ О ТРЕУГОЛЬНИКАХ. ПАРАЛЛЕЛОГРАММЫ

    СОВЕТЫ   Тригонометрические таблицы   Пирамида   Объем и вес   Перпендикуляр, наклонная, проекция   Поперечный масштаб   Многоугольники   Таблица синусов   Объем и вес   Цилиндр   Таблица косинусов и синусов   Средняя линия трапеции